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LE’ITER TO THE EDITOR 

Self -motion and collective behaviour of classical one- 
component plasmas 

S Sjodin and S K Mitra 
Institute of Theoretical Physics, Chalmers University of Technology, Fack, S-402 20 
Goteborg, Sweden 

Received 29 June 1977 

Abstract. The self- and collective motions of one-component plasmas are investigated with 
the aid of a kinetic theory of classical fluids developed recently by Sjogren and Sjolander. 
Present calculations show a strong coupling between self- and collective motions and a 
change in the behaviour of the plasma dispersion relation with increasing density, in 
agreement with computer simulations. 

In recent years molecular dynamics (MD) simulation has been used to study individual 
particle and collective behaviour of one-component plasmas (OCP) (Hansen et a1 1975). 
These calculations have shown two interesting features: (i) the single-particle motion 
shows a strong coupling to the collective modes, especially at high densities; (ii) the 
slope of the dispersion curve for the plasma oscillations changes sign from positive to 
negative with increasing density. 

In this work we study the single-particle motion through the velocity autocorrela- 
tion function and the collective properties of the system through the dynamical 
structure factor S(q, 0). The calculations are based on the kinetic theory of classical 
fluids recently developed by Sjogren and Sjolander (1977, to be referred to as ss). 

The OCP is usually characterised by the dimensionless parameter r = (Zk)’/ak,T, 
where Ze is the ionic charge and a = ( 3 / 4 ~ n ) ” ~ ,  where n is the number density. The 
dynamical properties of the OCP are uniquely determined by r and the plasma 
frequency wp = (47rnZzez/m)”2, where m is the ionic mass. 

The normalised velocity autocorrelation function Z ( t )  is defined as 

Z(t)  =(U(?) U ( O ) ) / ( U * )  (1) 
and satisfies the Mori equation 

d 
-Z(t) + dt’M(t - t‘)Z(t’) = 0 
dt I.’ 

with the corresponding memory function M ( t ) .  

the density-density correlation function, denoted here by G(r, t). 

transform of G(r, t): 

The dynamical structure factor S(q, U )  is the Fourier transform in space and time of 

From the ss theory we have the following expression for the Fourier-Laplace 

(3) 
1 Fs(q9 z ) - z - ’  

1 + (2 ’ /q ’ ) [ (qZ/z  )nc ( 4 )  - L  (41 z ) / k B T l ( f - s ( q ,  z 1 - -*) 
F ( q , z ) = ; S ( q ) +  
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where S(q)  is the static structure factor, c ( q )  = (1 - l/S(q))/n is the direct correlation 
function, F, is the self part of F, and L is a certain memory function entering in the ss 
theory. In equation (3) only coupling between the density and the longitudinal current 
is included. The dynamical structure factor S(q ,  o) is obtained from F(q, 2) through the 
relation 

(4) 
1 

S(q ,  U )  = - Re F(q, z = io). 
7T 

The term L takes into account collisions between the particles that are not included 
in the conventional mean field theory. Therefore, if we put L = 0, the expression in 
equation (3) reduces to the mean field theory of Kerr (1968) and Singwi et a1 (1970), 
which in the limit q + 0 and r << 1 reproduces the well known Vlasov results for the OCP. 

In the expression for L(q,  t) in the ss theory a time-dependent effective potential 
enters and this is equal to the bare potential at t = 0 and goes over to -c(q)kBTfor large 
times. Here, however, we have adopted a time-independent effective potential and 
assumed it to be equal to the bare potential u ( q )  = 4 ~ ( Z e ) ~ / q ~ ,  which is necessary to 
satisfy the fourth frequency moment of S ( q , o ) .  We therefore get the following 
expression for L (see equation (3.34) in ss): 

L = L , + L z - L ,  
where 

A very similar formula was recently proposed by Gould and Mazenko (1975). The only 
difference is that in their expression (4) is replaced by the direct correlation function 
-c(q)kBT. Using the bare potential u ( q )  is however, as pointed out above, necessary to 
satisfy the fourth frequency moment of S(q ,  U ) .  

Equations (31, (6) ,  (7), (8) and (10) have been solved using an iterative procedure. 
As an initial approximation for F(q, t )  we have adopted Lovesey’s expression (Lovesey 
1971) from viscoelastic theory. For the self part we have used the Gaussian approxima- 
tion 

(1 1) Fs(q, t )  = exp(-q2V(t))) 
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starting with an approximate expression for the mean square displacement ( r z ( f ) )  that 
gives the correct limiting behaviour at large and small times. The details of the 
calculational procedure will be discussed in a forthcoming paper. 

Calculations have been done for r = 1 and r = 10. We have taken the values of S ( q )  
from the results of Monte Carlo calculations of Hansen (1973). Self-consistency was 
achieved after four iterations for r = 1 and six iterations for r = 10. 

In figure 1 we compare our results for Z ( t )  with MD results of Hansen et a1 (1975). 
Both for r = 1 and r = 10 the agreement is quite satisfactory. We have also calculated 
the self-diffusion coefficient D,, using the well known Kubo formula 

(12) 

For r = 1 our value differs by 18% and for r=  10 by 17% from that of Hansen et al. 
In table 1 we list the positions of the plasmon peaks at r = 1 and r = 10 obtained from 

1 "  
D, = 5 lo ( u ( t ) .  ~ ( 0 ) )  dt. 

Figure 1. The normalised velocity autocorrelation function Z(r). The full curve is from 
theory and the crosses are the MD results of Hansen er al(1975). The upper results are for 
r=  1 and the lower results for I'= 10. 

Table 1. The frequency (in units of up) of the plasmon peak for different values of 4 (in units 
of a- ' )  for I-= 1 and r =  10. w(q)MD are the corresponding MD results of Hansen et a1 
(1 975). 

~ 

r =  1 

4 0.6 0.8 1.0 1.2 1.4 
4) 1.05 1.10 1.15 1.35 1.36 
O(q)MD 1.28 1.29 -1.32 -1.34 -1.35 

r=io 

4 1 s o  1.3 1.6 1.9 2.25 
w ( q )  1 .o 0.98 0-90 0.88 0.85 
O ( q ) M D  0.98 0.97 0.94 -0.9 1 -0.86 
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the present calculation together with the MD results. Finally, in figure 2 we present our 
results for S(q, w )  for q = 0.6 and 1.4 A-' for r =  1 and for q = 1.29 and 6.12 A-' for 
r = 10 together with the MD results. 

0 0  1 0  2 0  
i_ 

3 0  

q : l ' L  

0.15 I r = l  i 

I ' " ' ' 1  

P w / w  

Figure 2. The dynamical structure factor S(q, w )  in units of 0;'. q is in units of U - ' .  The 
full curve is from theory and the crosses are the MD results of Hansen et a1 (1975). 

We find that the present theory gives quite acceptable agreement, keeping in mind 
that no adjustable parameters enter. Especially, we notice a change in the velocity 
autocorrelation function from an exponential decay to an oscillatory behaviour with 
increasing r. The oscillations in the self-motion are due to coupling to the density 
fluctuations in the system as might be expected from the expression for M ( t )  (equation 
(10)). For small densities, where the self-diffusion coefficient D, is large, this coupling is 
less important because the single-particle motion then decays in a time short compared 
to that of a plasma oscillation. For larger densities the coupling becomes more 
important and manifests itself as damped oscillations in the velocity autocorrelation 
function. 

To second order in q the dispersion relation w ( q )  for the plasma oscillations can be 
written in the form 

w2(q)=w;(i  +q2/r)+w2 (13) 



Letter to the Editor L167 

where the first term stems from the mean field part and the remaining part, denoted 
here bypq2,  comes from L. We notice in table 1 that the slope of the dispersion relation 
changes sign from positive to negative with increasing r. For small r the mean field part 
dominates and gives a Vlasov-type dispersion, but the contribution from L increases 
with increasing r and for I'> 3 the dispersion becomes negative. 

It is very gratifying to find that the theory of ss satisfactorily explains the essential 
features of the dynamics of the OCP, although coupling to transverse current and 
temperature modes are not included. It would be of great interest to test the present 
theory for considerably larger values of I'(-lOO), but unfortunately we could not 
pursue this program because of the large computer time required for this iterative 
procedure. 

We wish to thank Dr J P Hansen for sending us his MD results, Dr P Schofield and Dr M J 
Gillan for many helpful discussions and Dr L A Turski for a very thorough and critical 
reading of the manuscript. We are grateful to Professor A Sjolander for his all- 
constructive suggestions in this work. 
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